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Summary

 

Interactions between plants and soil biota resist invasion by some nonnative plants
and facilitate others. In this review, we organize research and ideas about the role
of soil biota as drivers of invasion by nonnative plants and how soil biota may fit into
hypotheses proposed for invasive success. For example, some invasive species
benefit from being introduced into regions of the world where they encounter
fewer soil-borne enemies than in their native ranges. Other invasives encounter
novel but strong soil mutualists which enhance their invasive success. Leaving
below-ground natural enemies behind or encountering strong mutualists can
enhance invasions, but indigenous enemies in soils or the absence of key soil
mutualists can help native communities resist invasions. Furthermore, inhibitory and
beneficial effects of soil biota on plants can accelerate or decelerate over time
depending on the net effect of accumulating pathogenic and mutualistic soil organ-
isms. These ‘feedback’ relationships may alter plant–soil biota interactions in ways
that may facilitate invasion and inhibit re-establishment by native species. Although
soil biota affect nonnative plant invasions in many different ways, research on the
topic is broadening our understanding of why invasive plants can be so astoundingly
successful and expanding our perspectives on the drivers of natural community
organization.
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I. Introduction

 

Most naturalized nonnative species appear to behave ecologically
more or less like resident species, and occur at low to mid
frequencies (Huston, 1994; Williamson & Fitter, 1996;
Davis 

 

et al

 

., 2000; Brown & Peet, 2003). However, a small
proportion of introduced nonnative species become locally
dominant (Levine 

 

et al

 

., 2003, and citations therein) and
change relatively diverse communities into near monocultures.
These species are generally referred to as ‘invasive’ (Colautti
& MacIsaac, 2004). This transformation of communities
indicates that very powerful, but poorly understood, ecological
phenomena are at work. Interest in the causes and effects of
invasions has prompted the development of a number of
nonmutually exclusive hypotheses to explain invasions including:
enemy release, the evolution of novel traits, disturbance,
novel biochemical weapons, and empty niches in invaded
communities (Mack 

 

et al

 

., 2000; Hierro 

 

et al

 

., 2005). Rapidly
accumulating research has connected soil organisms to these
hypotheses and indicates that they may have powerful effects
on invasions. Here, we have organized research and ideas
about the role of soil biota as drivers of invasion by nonnative
plants and how the effects of soil biota on invasives may
expand the general hypotheses that have been proposed for
invasive success. In this context, we have organized this review
into three sections: II, Soil community effects; III, Soil-borne
antagonists; and IV, Soil-borne mutualists. Section II, Soil
community effects, treats soil communities as a ‘black box’
while sections III, Soil-borne antagonists (i.e. nematodes and
pathogens), and IV, Soil-borne mutualists (i.e. mycorrhizas
and nitrogen fixers), attempt to dissect some components of
the ‘black box’ and partition biological interactions into two
distinct functional groups. Our groupings of organisms by
their biotic interactions are broad generalizations used for
organizational clarity (e.g. most mycorrhizas are classified as
mutualists). However, it is important to clearly acknowledge
that the effects of some individual species are counter to our
classification (e.g. mycorrhizas can act as parasites instead of
mutualists).

 

II. Soil community effects

 

1. Plant–soil biota feedbacks

 

Plant species alter soil biota in ways that lead to either positive
or negative plant–soil biota feedback effects (Park, 1963;
Bever 

 

et al

 

., 1997; Bever, 2002, 2003). In other words, plants
affect organisms in their rhizospheres, and the rhizosphere
biota in turn affects the plants. The direction of the feedback
depends on the relative negative effects of accumulating soil-
borne pathogens, herbivores and parasites (Park, 1963; Brown
& Gange, 1989; van der Putten, 2001) vs the relative positive
effects of accumulating mycorrhizal fungi, nitrogen fixing
bacteria, and other beneficial soil organisms (Allen & Allen,

1984; Baker & Schwintzer, 1990; Garbaye, 1994) and the
indirect effect of these plant–soil biota interactions on plant–
plant interactions (Bever, 2003).

Plant–soil biota feedback experiments utilize a multistep
process. In the first stage host-specific, or at least host-favoring,
microbial communities are generated by growing a plant
species in a common and nonsterile soil for several months or
longer allowing the plant to interact with and alter the soil
community. Next, the original plant is removed and a second
plant is grown in the soil that was ‘trained’ or ‘preconditioned’
by the first plant (or soil aliquots). The purpose of the second
step is to compare the effects of host-specific soil biota to non-
host-specific biota. If the second plant grows larger in conspecific-
conditioned soil (soil preconditioned by same species)
than in heterospecific-conditioned soil (preconditioned by
other species), the feedback is positive. If the second plant
grows larger in heterospecific-conditioned soil than in
conspecific-conditioned soil, the feedback is negative. However,
feedbacks can be caused by factors other than soil biota. Plants
can reduce nutrients or release allelopathic chemicals that
cause negative feedbacks. Therefore, some studies have
conducted parallel feedback experiments in nonsterile and
sterilized soil to help distinguish the role of biota vs. nutrient
availability or designed experiments to control for differences
in nutrient availability. Another approach is to use soil
solutions that have been filtered to contain specific portions
of the microbial community (Klironomos, 2002).

Conceptually in accordance with the Janzen–Connell
hypothesis on negative density dependence (Janzen, 1970;
Connell, 1971), negative plant–soil biota feedbacks appear to
be predominant in natural systems, and they provide frequency-
dependent regulation of populations and help to maintain
plant species diversity (Florence, 1965; Augspurger & Kelly,
1984; van der Putten 

 

et al

 

., 1993; Mills & Bever, 1998; Packer
& Clay, 2000; Klironomos, 2002; Bever, 2003). Negative
plant–soil biota feedbacks are driven by soil fungal pathogens
(Mills & Bever, 1998), mycorrhizas (Bever, 2002), and bacteria
(Westover & Bever, 2001).

Unlike the negative feedbacks generally described for native
plants, invasives often demonstrate positive feedbacks with
soil biota in their new ranges. For example, when grown in
native European soils in the absence of competitors, the soil
biota that developed in association with 

 

Centaurea maculosa

 

had increasingly negative effects on the plant’s growth (Callaway

 

et al

 

., 2004a).  But in soils from North America (nonnative
range), the soil biota that developed in association with 

 

C.
maculosa

 

 had increasingly positive effects on itself, perhaps
contributing to the development of near monocultures for
which the species is famous in the northern Rocky Mountains.
Furthermore, these plant–soil biota interactions translated
into competitive effects, at least in pot experiments, which
have not been reported before for invasive species (Figs 1
and 2). Competing with a French species (

 

Festuca ovina

 

) in
European soils, 

 

C. maculosa

 

 grew much better in soils that had
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been previously conditioned by 

 

F. ovina

 

 than soils that had
been conditioned by conspecifics (Fig. 1), indicating negative
plant–soil biota feedbacks. By contrast, 

 

C. maculosa

 

 compet-
ing with an American species (

 

Festuca idahoensis

 

) in American
soils tended to grow better in soils that had been conditioned

by conspecifics than soils conditioned by 

 

F. idahoensis

 

, indi-
cating positive plant–soil biota feedbacks. Sterilization of
the soil eliminated the feedback relationships in both cases.
In summary, feedback effects on 

 

C. maculosa

 

 in competition

Fig. 1 Total biomass of Centaurea maculosa plants grown in 
competition in European soil (Central Massif population) and North 
American soil (Missoula population) that had been preconditioned by 
either C. maculosa or a Festuca species native to the place of soil 
origin. Plants were grown in soils either sterilized or not sterilized after 
preconditioning. In a three-way ANOVA (origin, species used for 
preconditioning and sterilization as main effects): Forigin = 44.9, 
df = 1,172, P < 0.001; Fculture × species = 0.77, df = 2,172, 
P = 0.288; Forigin × culture × species = 6.88, df = 2,172, P = 0.011; 
Forigin × sterilization = 10.05, df = 2,172, P < 0.001; 
Fculture × species × sterilization = 4.11, df = 2,179, P = 0.020. 
P-values shown above paired bars indicate a significant difference 
in preconditioning effects for those treatments. Reprinted from 
Callaway et al. (2004a).

Fig. 2 Total biomass of Festuca species grown alone and in 
competition with Centaurea maculosa in soils from native and 
invaded regions that had been ‘preconditioned’ by either the Festuca 
species or C. maculosa. Error bars show 1 SE. The overall effect of 
C. maculosa on Festuca was competitive (FCentaurea = 11.33, 
df = 1,170, P < 0.001), but C. maculosa had stronger competitive 
effects on F. idahoensis in North American soil (FCentaurea × region 
= 8.83, df = 2,170, P < 0.001) but Festuca species and soil region are 
confounded. More importantly, while sterilization of European soil 
slightly enhanced Festuca ovina biomass (P = 0.037), there was no 
significant preconditioning effect on F. ovina. Sterilization of North 
American soil strongly enhanced the biomass of Festuca idahoensis 
(P < 0.001), and preconditioning nonsterile North American soil 
with C. maculosa gave F. idahoensis a strong competitive 
disadvantage against C. maculosa competitors (in nonsterilized 
soil, Fpre-culturing effect = 3.77, df = 1,82, P = 0.036).
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were very similar to feedback effects of 

 

C. maculosa

 

 growing
alone. Interestingly, these feedback-competition patterns were
observed in the effects of 

 

C. maculosa

 

 on 

 

F. idahoensis

 

 (Fig. 2).
In both North American and European soils, both Festuca
species grown alone performed better in soils conditioned by

 

C. maculosa

 

 than in soils conditioned by 

 

Festuca

 

, indicating
negative plant–soil biota feedback effects. However, in
competition plant–soil biota feedback effects changed. When
grown with a 

 

C. maculosa

 

 competitor, 

 

F. ovina

 

 performed
better in European soils conditioned by 

 

C. maculosa

 

 than soils
conditioned by conspecifics, probably because of negative
feedback effects on 

 

C. maculosa

 

. By contrast, 

 

F. idahoensis

 

performed much better in soils conditioned by conspecifics
than in soils conditioned by 

 

C. maculosa

 

, perhaps because of
the strong positive plant–soil biota feedbacks experienced
by 

 

C. maculosa

 

 in American soil (but see Bais 

 

et al

 

., 2003
regarding the potential confounding effects of allelopathic root
exudates).

Agrawal 

 

et al

 

. (2005) tested the effect of soil microbial
feedbacks of 10 congeneric pairs of native and nonnative
herbaceous plant species in Ontario, Canada. Soil microbial
feedbacks were twice as negative for native than nonnative
species. These results differ from two other studies comparing
the pathogens and pathogenic activity associated with con-
generic pairs of native and nonnative species (Blaney &
Kotanen, 2001; I. M. Parker & G. S. Gilbert, unpublished;
see section III.2. Pathogens).

Klironomos (2002) found that the relative abundance of
61 grassland species was highly correlated with the strength
and direction of soil feedbacks (rare species experienced
strong negative feedbacks and common species experienced
positive feedbacks), suggesting that community composition
was strongly affected by plant–soil biota feedbacks. Although
the effects of soil chemistry were not controlled in this large
experiment, Klironomos later determined that the feedback
effect of a subset of 10 species was driven by the varying effects
of pathogenic/saprophytic fungi. Furthermore, this subset
was divided into five rare native species and five dominant
nonnative species. He found that four of five nonnative
species experienced significant positive feedbacks while five of

five rare native species experienced negative feedbacks. The
negative feedbacks experienced by rare natives were driven by
host-specific soil-borne pathogens, whereas the invasive
nonnative species were not affected by soil-borne pathogens.
In contrast to these results for five rare native and five highly
abundant nonnative species, the relationship between soil
feedback and species abundance for native (26 species) vs
nonnative species (35 species) spanning a range of abundances
was virtually identical (K. O. Reinhart & J. N. Klironomos,
unpublished). In other words, abundant native and nonnative
species experienced more neutral to positive feedbacks, whereas
less abundant native and nonnative species experienced more
negative feedbacks. However, this comparison did not separate
invasives from the total pool of nonnative species.

 

2. Net effect of soil biota

 

Of the five experiments conducted on five species (Table 1)
four show more negative effects of soil biota in the native
ranges than in the nonnative ranges. Although the number of
current studies is meager, they suggest that invasive success
may be influenced by escape from the inhibitory effects of
below-ground organisms.

 

Ammophila arenaria

 

, a dune grass from Europe, has invaded
coastal dunes in the western USA, South Africa, New Zealand,
and Tasmania. Knowledge about 

 

Ammophila

 

 in its native and
nonnative ranges is probably more detailed than for any
other species; however, the results vary. Soil nematodes and
pathogens inhibit the growth of 

 

Ammophila

 

 in its native
European range (van der Putten 

 

et al

 

., 1988, 1990, 1993; De
Rooij-van der Goes, 1995). Beckstead & Parker (2003) com-
pared the effects of soil biota on 

 

A. arenaria

 

 in its introduced
range (California) with those in its native range (The Nether-
lands). While not directly comparing European and North
American soils in the same experiment, they found that North
American soils also dramatically inhibited the growth of

 

Ammophila

 

. Seed germination was reduced by 12–16%, seedling
survival was reduced by 7–13%, and root and shoot biomass
decreased up to 80% in the nonsterilized soil treatments
relative to the sterilized treatments. These strong inhibitory

Table 1 Summary of biogeographical comparisons of plant–soil biota interactions associated with invasive nonnative plant species in their native 
and nonnative ranges
 

Species
Effect of soil biota
in native range

Effect of soil biota
in nonnative range

Biogeographical 
effect Reference

Acer negundo — −, =, + yes Reinhart & Callaway (2004)
Acer platanoides — −, =, + yes Reinhart & Callaway (2004)
Ammophila arenaria — — no Beckstead & Parker (2003)
Ammophila arenaria — −, =, + yes Knevel et al. (2004)
Centaurea maculosa — − yes Callaway et al. (2004a)
Prunus serotina — =, + yes Reinhart et al. (2003)

—, Strong negative effect; −, mild negative effect; = , no effect; +, positive effect.
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effects from soil biota in the invaded region were as strong
as, or stronger than, those found in the native region (Fig. 3).
Ideally, comparative experiments would be performed in the
same place and at the same time, but these results suggest that
invasive Ammophila does not seem to have escaped the inhib-
itory effects of soil biota. In a separate experiment, Knevel
et al. (2004) compared the effects of the soil biota from native
(the Netherlands) vs nonnative ranges (South Africa) to one
another and to a control (sterilization treatment). They report
that in three of five sites in the native range, Ammophila
produced less than half of the amount of biomass produced
in sterilized soils. By contrast, a similar growth reduction was
observed in only one of seven sites in the portion of the exper-
iment using soil from the nonnative range, contrasting with
Beckstead & Parker (2003), suggesting that Ammophila has
escaped the suppressive effects of the soil biota in its homeland.
However, five of seven sites in the nonnative range showed a
lower growth response relative to the sterilization control
indicating that Ammophila experienced negative effects of
soil biota even in its nonnative range.

Plant–soil biota interactions have been found to differ in
the native and nonnative ranges of three tree species. One of
these tree species, Prunus serotina, is negatively affected by
soil pathogens (Pythium spp.) in its native range (Packer &
Clay, 2000; Reinhart et al., 2005). Interestingly, P. serotina is an
invasive in woodlands of north-western Europe (Starfinger
et al., 2003, and citations therein) where it reaches much
higher local densities than in North America (Reinhart et al.,

2003; K. O. Reinhart, unpublished). Reinhart et al. (2003)
found that soil sterilization increased the survival and growth
of P. serotina seedlings in soil in its native range; however,
sterilization had no effect on seedling survival and a negative
effect on seedling growth in the nonnative range. The con-
trasting results for seedling survival in the native and nonnative
ranges suggest that P. serotina experience greater soil-borne
disease in their native than nonnative ranges (suggestive sup-
port of enemy release hypothesis, Fig. 4b) while the biomass
data suggest that P. serotina may have escaped its below-ground
enemies and/or acquired better below-ground mutualists in
its nonnative ranges than its native ranges (suggestive support
of enhanced mutualisms hypothesis, Fig. 4c). In another
study, sterilization of soil from native ranges had a positive
effect on the growth of Acer platanoides and Acer negundo.
However, soil effects in invaded nonnative ranges were more
complex. In the nonnative ranges, sterilization of soil col-
lected near resident native species had a negative effect on the
biomass of A. platanoides in one part of its nonnative range,
and had a negative effect on the change in relative height of
A. negundo and A. platanoides in their nonnative ranges
(Reinhart & Callaway, 2004). These negative effects of soil
sterilization in the nonnative vs native ranges of two Acer
species and P. serotina provide support for both the enemy
release and enhanced mutualisms hypotheses (Fig. 4).

Similar to the previous studies, soil microbes from the
European home range of C. maculosa have stronger inhibitory
effects on its growth than soil microbes from soils in North
America (also see section II.1 Plant–soil biota feedbacks).
Callaway et al. (2004a) found that sterilization of soils col-
lected from four populations of C. maculosa in its native range
(Europe) caused an average 166% increase in the total biomass.
By contrast, sterilization of soils collected from six populations
of C. maculosa in its nonnative range (north-western USA)
only increased its growth by an average of 24% (Fig. 5). These
studies have been repeated under different conditions and
with different sources of soil, and like those for Ammophila
recent results have not been consistent. For example, experi-
ments with Romanian soil biota have not shown evidence
suggestive of enemy release (R. M. Callaway, unpublished).
We do not know why the results of sterilization experiments
have varied so much but there are many possible causes. First,
the variation between the studies may represent natural
ecological variation in plant–soil biota interactions over space
and time (Blaney & Kotanen, 2001; O’Hanlon-Manners &
Kotanen, 2004). Thus, species with large ranges are likely to
have varying plant–soil biota interactions throughout their
range. This suggests that past sampling has not been con-
ducted at large enough biogeographical scales. Replication of
populations is important and should be representative of the
entire range or targeted if justified by ecologically significant
information (i.e. knowledge of the location of the founding
population). Second, sterilization can cause nutrient flushes
(Troelstra et al., 2001); however, in the C. maculosa experiments

Fig. 3 Comparison of the percentage of reduction of total biomass 
for plants grown in soil from the European native range in the 
Netherlands and introduced range in California for two growth 
periods (van der Putten & Peters, 1997). Soil in California was either 
nonsterilized stored (NSS) or nonsterilized fresh (NSF); soil from The 
Netherlands was nonsterilized. Bars show bootstrapped 
means ± 1 SD; iterations = 1000. Redrawn from Beckstead & Parker 
(2003) with permission from the authors and from The Ecological 
Society of America.
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pots were well fertilized. Third, sterilization only sets initial
conditions, and soils certainly do not remain sterile for the
course of the experiment. In fact, total microbial biomass can
be higher after a several-month experiment in initially sterilized
soils than in nonsterilized soils (W. H. Holben and R. M.
Callaway, unpublished). It is difficult to know if re-colonizing
bacteria (or other microbes) are beneficial, neutral, or inhibi-
tory and if microbial immigrants have different effects in non-
sterile vs sterilized soils, or if different sterilization events or
sterilization of different soils can drive recolonization in
different directions. Clearly, sterilization experiments have the
potential to yield insight, but this insight needs to be corrob-
orated by other types of measurements and experiments.

Other types of measurements and experiments include
the identification of microbial taxa in sterilization experiments,
addition of selective biocides (but see Hood et al., 2004),
experimental addition of particular microbial taxa to sterilized
soils or plant–soil biota feedback experiments. However, soil
taxa can be very difficult to identify, and choosing which taxa
(or amount) to add or the particular conditions in which to
test the effects of particular taxa is likely to be arbitrary since
the choice may not be directly related to the highly diverse and
variable interactions and conditions found in natural systems.
Plant–microbe interactions also vary substantially in different
abiotic environments. Biotic complexity may also muddy
the results of experiments with soil microbes. Plant–soil biota

Fig. 4 Invasive plants often experience more negative net soil biota effects in their native ranges than in their nonnative ranges (a), refer to 
Table 1. This variation in interaction strength and/or direction can be explained by the varying impact of either antagonists (b) or mutualists (c). 
The enemy release hypothesis (b) predicts more negative impacts of antagonists (pathogens) in native than nonnative ranges and similar impacts 
of mutualists (mycorrhizas) between ranges. By contrast, the enhanced mutualisms hypothesis (c) predicts more positive effects of mutualists 
in nonnative than native ranges and similar impacts of antagonists between ranges. The y-axes represent hypothetical relative response indexes. 
Positive numbers indicate either a positive net soil biota (a) or a positive effect of mycorrhizas (i) or pathogens (ii), and negative numbers indicate 
negative interactions. The specific values depicted in (a) are hypothetical but consistent with biogeographical trends in Table 1. To highlight the 
differences between these two competing hypotheses, we have drawn (b) and (c) as if the effects of mycorrhizas and pathogens are additive 
and mutually exclusive; however, some combination of these hypotheses is most likely to exist and determine outcomes of invasions. Other 
groups of mutualists and antagonists can be substituted. The data in these are hypothetical but could be derived from glasshouse/field 
experiments including plantings in experimental soil treatments, pathogenicity trials, biocide experiments, etc. (e.g. net soil biota 
effect = (nonsterile soil − sterilized soil) × nonsterile soil−1).

Fig. 5 Total biomass of Centaurea maculosa plants grown in 
nonsterilized and sterilized soil collected from European and North 
American populations. Soils were collected from the rhizospheres of 
grasses near C. maculosa individuals. In a four-way analysis of variance 
(ANOVA) (region of origin, rhizosphere and sterilization as main effects, 
and population nested within region of origin): Forigin = 40.18, 
df = 1,297, P < 0.001; Fpop = 21.81, df = 5,297, P < 0.001; 
Frhizosphere = 21.12, df = 1,297, P < 0.001; Fsterilization = 110.87, 
df = 1,297, P < 0.001; Forigin × sterilization = 29.35, df = 1,297, 
P < 0.001; Forigin × pop × rhizosphere = 16.2, df = 2,314, P < 0.001. 
Redrawn from Callaway et al. (2004a).
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feedback experiments are an ideal method of describing
plant–soil biota interactions (see section II.1 Plant–soil biota
feedbacks and Bever, 1994, 2002, 2003). However, it may
prove difficult to expand these experimental designs beyond a
single community and to include two or more plant commu-
nities, and to sufficiently describe interactions among multiple
populations (i.e. adequate spatial sampling) interacting with
a focal species in its native and nonnative ranges.

III. Soil-borne antagonists

Soil biota can suppress the growth, fecundity, and survival of
plants in natural communities (Augspurger & Kelly, 1984;
van der Putten et al., 1993; Mills & Bever, 1998; Klironomos,
2002; Hood et al., 2004; Reinhart et al., 2005; Thorpe &
Callaway, 2006), and it is logical to assume that escape from
harmful soil biota would allow many species to increase in
abundance. The enemy release hypothesis predicts that invasive
nonnative species escape frequency dependent control by
host-specific natural enemies (e.g. herbivores and pathogens,
Fig. 4b), resulting in a rapid increase in their abundance and
distribution (Keane & Crawley, 2002). As much as native
herbivores can inhibit nonnative invasives, the presence of
strong indigenous below-ground antagonists may resist
invasion by nonnative species. For example, attempts to grow
several species of agricultural (e.g. apple, pear, cherry) and
forestry significance (Douglas fir and pines) in new regions of
the world have been hindered by the direct negative effect of
indigenous pathogens (Scheffer, 2003). Unfortunately, little is
known about the causes of failed invasions.

Biocontrol practitioners have long recognized that patho-
gens from an invasive plant’s homeland, including pathogens
in the soil, might suppress the invasives in their new habitats
(Caesar, 2000; Charudattan & Dinoor, 2000). To our knowledge,
the most thorough case study of biocontrol by a pathogen is
that of the foliar rust, Puccinia chondrillina on Chondrilla juncea,
a perennial weed of cereal crops native in Europe and intro-
duced to Australia and North America (Burdon et al., 1981;
Panetta & Dodd, 1995). Bioherbicides have also been developed
that utilize soil-borne pathogens (e.g. Phytophthora palmivora)
(Charudattan & Dinoor, 2000).

1. Nematodes

As noted above, soil nematodes (and pathogens) inhibit the
growth of A. arenaria in its native European range (van der
Putten et al., 1988, 1990, 1993; De Rooij-van der Goes, 1995).
Van der Putten et al. (2005) compared the total number of
taxa of root feeding nematodes and of specialist root feeding
nematodes associated with A. arenaria in its native (Europe)
and nonnative ranges (Pacific coast of USA, South Africa,
New Zealand, and Tasmania). The average number of plant-
feeding nematodes did not differ between the native and
many of the nonnative ranges (i.e. USA, South Africa and

Tasmania), and New Zealand was the only region where A.
arenaria encountered fewer nematode species relative to in its
native range. However, there were fewer taxa of root feeding
specialist nematodes in three of the four surveyed nonnative
ranges (South Africa, New Zealand and Tasmania) relative to
observations in the native range. This decrease in specialist
nematodes is similar to patterns recorded for above-ground
herbivores of other invasive species ( Jobin et al., 1996; Wolfe,
2002; Wolfe et al., 2004), but comparisons of the impact of
nematodes in native and nonnative ranges are necessary to
provide a complete picture of enemy release.

2. Pathogens

The enemy release hypothesis has been tested at the
community-level by testing the prediction that native species
will support more enemies than phylogenetically similar
nonnative species. Blaney & Kotanen (2001) tested the effects
of soil fungal pathogens on buried seeds of 15 congeneric pairs
of native and nonnative herbaceous plant species in Ontario,
Canada. Soil pathogens did not have a greater affect on native
than nonnative species. Similarly, in a comparison of 18 native
and nonnative clovers, no difference was found in pathogen
diversity, infection, leaf damage, or fitness effects of foliar and
damping-off fungi between native and nonnative species (I.
M. Parker & G. S. Gilbert, unpublished). These studies
do not support the enemy release hypothesis (but see Agrawal
et al., 2005). However, these studies have not separated
invasives from the total pool of nonnative species and have not
explored invasives that are phylogenetically distinct from
natives. The probability of host shifts by pathogens from
natives to nonnatives is expected to be greater if the nonnative
plant species are phylogenetically similar to native species
(Mack, 1996; Parker & Gilbert, 2004; but see Duncan &
Williams, 2002), and comparisons of invasives to unrelated
dominant native species may yield different results.

Evidence for enemy release requires comparative experiments
using soil biota from the native region and the invaded region
to determine whether the plant experiences less pathogenic
activity in the nonnative than native ranges. Ideally, these
effects must characterize interactions occurring in the field,
incorporate variation within native and nonnative regions,
and include appropriate replication in both the native and
nonnative ranges. Plant pathologists have described the
importance of the abiotic environment in driving the expres-
sion of disease symptoms and consider environment as one of
the three components in the ‘disease triangle’ (i.e. pathogen,
host, and environment) (Park, 1963; Agrios, 1997). Because
of variability in environments and ecotypes, experiments
across a range of environments and with multiple populations
should be compared so that variation among populations within
a region (native vs invaded) can be compared with variation
among regions. Biogeographic comparisons of other traits of
invasives illustrate the importance of using multiple populations
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(Maron et al., 2004). However, experiments with soil biota
have practical limitations. For example, the importation of
foreign microbes, especially pathogens, is constrained by
ethical considerations, trade regulations, and quarantine policies
because of the largely unknown environmental threat that
nonnative microbes pose. To our knowledge, no study of plant
invasions and soil biota have met the criteria that we outline
above, except possibly the body of research on A. arenaria
(Beckstead & Parker, 2003; Knevel et al., 2004; van der Putten
et al., 2005). However, these criteria are very difficult to meet
for even above-ground enemies (but see DeWalt et al., 2004).

IV. Soil-borne mutualists

Mutualistic effects of soil biota clearly facilitate some invasions,
and some invasives alter soil-borne mutualists in ways that
alter recipient plant communities (Richardson et al., 2000).
Two of the strongest soil mutualisms involve mycorrhizal
fungi and nitrogen-fixers, both of which improve the nutrient
status of their host-plants. Therefore, interactions between
these mutualists and invasives have the potential to alter soil
chemistry, which in turn can affect native plant communities
(Miki & Kondoh, 2002; Hawkes et al., 2005). Recent
progress with molecular techniques linking microbial identity
and diversity to function should dramatically improve our
understanding of invasive-driven changes in microbial
communities and affects on nutrient cycling (Schadt et al.,
2005; Torsvik & Øvreås, 2004). Related to microbial effects,
the effects of nonnative plant species on soil chemistry and
ecosystem function have been described in detail by Ehrenfeld
(2004) and Wolfe and Klironomos (2005).

1. Mycorrhizas

One of the most ubiquitous mutualisms on earth is that
between mycorrhizal fungi and plants. As mentioned earlier,
the affect of individual mycorrhizal species can range from
parasitic to mutualistic. Thus, the potential exists for new
combinations of nonnative species and resident mycorrhizas
to yield either strong parasitic or strong mutualistic interactions.
Invasives might possibly encounter soil biota that facilitate
establishment, but the potential for stronger facilitation by
soil microbes in new habitats (nonnative) than in old habitats
(native) does not fit into any of the current hypotheses for
invasion. Here we refer to this concept as the enhanced
mutualisms hypothesis (see Fig. 4c). Relative to the enemy
release hypothesis (see III. Soil-borne antagonists), we know
much less about how enhanced mutualisms affect invasions
(Fig. 4b vs c). Furthermore, the evolutionary and ecological
processes by which invading species might encounter novel
yet stronger mutualists than those in the invasive’s home
community are not yet clear. It is not surprising for a nonnative
plant to find a new mutualist partner that allows its existence
in new regions of the world (Richardson et al., 2000); however,

for a nonnative species to find a new mutualistic partner
that drives the transformation of a species from low to super
abundance does not have a clear theoretical underpinning.
For haphazard encounters with mutualists from the nonnative
range to drive far more beneficial relationships than mutualisms
in the invasive’s native range, mutualisms must be general,
weakly specialized, or tend to evolve away from intense
interaction strengths. Alternatively, it is important to consider
that interactions between plants and mycorrhizas are not
always simple two-way mutualisms where both partners benefit.
For example, nonnative plants may exploit mycorrhizal
associations because individual mycorrhizas form symbioses
with multiple plants at one time forming a mycelial network.
The nonnative species may be able to exploit the benefits of
the symbiosis while escaping the mutual cost of maintaining
the network. This sort of parasitism may be unstable but may
help the invasive species establish and displace native species
as the system reaches a new stable equilibrium (Schlaepfer
et al., 2005). So far, we know little about mutualisms and
invasives and to our knowledge there is no evidence for
nonnative plants establishing new mutualisms that specifically
lead to dominance and competitive exclusion of native species.
However, there is a great deal of evidence that mutualistic
interactions among soil biota and plants contribute to plant
invasions.

Ectomycorrhizal fungal species tend to be more host-
specific than arbuscular mycorrhizal fungi (Borowicz & Juliano,
1991), and the absence of ectomycorrhizas initially limited
the introduction of many Pinus species to new regions of the
world (Brisco, 1959; Poynton, 1979). However, this barrier
has been overcome and appropriate ectomycorrhizas for Pinus
species have been transported around the world and are now
common throughout the southern and northern hemispheres
(Richardson et al., 1994). There is also evidence that the
invasive success of some plant species has been enhanced by
the presence of native ericoid mycorrhizas (Wardle, 1991;
Lazarides et al., 1997). Unlike ectomycorrhizas and ericoid
mycorrhizas, arbuscular mycorrhizal (AM) fungi have been
thought to neither limit nor facilitate invasion because of their
cosmopolitan distribution and general lack of host-specificity
(Richardson et al., 2000). Therefore, the presence of appro-
priate AM fungal mutualists may only allow invasion.

Mycorrhizal plants associate with large numbers of species
of AM fungi (Borowicz & Juliano, 1991; Molina et al., 1992;
Eom et al., 2000; Streitwolf-Engel et al., 2001). Therefore, we
might not expect powerful new alliances among invasives and
AM fungi that cause invasive dominance. Conversely, different
partner pairings can result in highly variable ecological effects
(Johnson et al., 1997; van der Heijden et al., 1998; Klironomos,
2003), creating the potential for unusual relationships and
pairings in plant invasions. In the only direct experimental test
of potential biogeographic effects of AM fungi, Klironomos
(2002) found that the AM fungal fraction of a North
American soil had only slightly more beneficial effects on rare
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native North American (four of five species) than invasive
nonnative species (two of five species). Furthermore, these
positive effects were only realized when the negative effects of
soil-borne pathogens were excluded.

Despite the general lack of host-specificity in AM fungi
associations, specificity in the growth responses of infected
plants exist. The extreme variability in the growth responses of
plants to different species of AM fungi can be a major deter-
minant of local plant species diversity in natural systems
(Johnson et al., 1997; Bever, 2002; van der Heijden et al.,
2003). Klironomos (2003) tested the effect of multiple AM
fungi isolates from native and nonnative sources on the myc-
orrhizal plant-growth responses for a number of grassland
species. He found that plant growth associated with AM fungi
that naturally co-occurred with a species (native AM fungi
treatment) ranged from highly parasitic to highly mutualistic,
depending on the combination of plant and fungal species
(Johnson et al., 1997; Klironomos, 2003). Although the
magnitude of responses was greater when using combinations
of local plants and fungi, plant–mycorrhizal interactions varied
from parasitic to mutualistic regardless of whether the source
of AM fungi was native or nonnative (Klironomos, 2003).
However, the nonnative AM fungi used were not necessarily
associated with the tested invasive plants in their nonnative
ranges. Incorporating AM fungi that are actually associated
with species that either fail to establish in nonnative ranges or
become problematic invasives may reveal important trends
that correspond with invasive success. For example, AM fungi
which have highly parasitic associations with nonnative
species may repel invasives while highly mutualistic associations
may facilitate invasion.

Arbuscular mycorrhizas are important mediators of
competitive interactions between nonnative and native plants.
Several studies have found that competitive effects of the inva-
sive C. maculosa on the native grass F. idahoensis are mediated
by AM fungi (Marler et al., 1999; Zabinski et al., 2002; Callaway
et al., 2004b; Carey et al., 2004). When competing with C.
maculosa, F. idahoensis plants were 171% larger when grown
in field soil that was sterilized and provided with a microbial
wash than when grown in field soil that was not sterilized
(Marler et al., 1999). By contrast, C. maculosa grown with larger
F. idahoensis were 66% larger in untreated field soil than field
soil drenched with a fungicide that reduced AM fungi coloni-
zation (Marler et al., 1999). Other studies have reported
similar interactions between this invasive and native grasses
(Zabinski et al., 2002; Callaway et al., 2004b; Carey et al., 2004),
suggesting that mycorrhizal networks mediate this interaction
either through carbon transfer from Festuca to Centaurea via
a shared mycorrhizal network (Carey et al., 2004) or increased
phosphorus uptake (Zabinski et al., 2002). Similar general
effects of soil fungi have also been shown for the annual invasive,
C. melitensis (Callaway et al., 2001, 2003).

Invasive plants also affect AM fungal communities in ways
that may create a plant–soil biota feedback facilitating invasion

and altering native communities. In California grasslands, native
species are more dependent on AM fungi than nonnative
species (Vogelsang et al., 2005). The average growth response
to a commercially available AM fungi species was c. 82%
greater in seven native species than 10 nonnative species. This
corresponded with a greater proportion of nonnative species
than native species in this system occurring in families described
as nonmycorrhizal. In three different experiments, they found
that invaded grasslands vs neighboring areas without invasion
were associated with 33%, c. 43%, and c. 83% reductions in
per cent root colonization by AM fungi (Vogelsang et al., 2005)
and similar findings have been reported for areas invaded by
garlic mustard (Alliaria petiolata) (Roberts & Anderson, 2001;
Stinson et al., 2006). In summary, it appears that invasion by
nonmycorrhizal species can reduce the abundance of AM
fungi, which negatively affects native plant species with strong
dependencies on AM fungi. These altered soil microbial
communities then facilitate additional invasion by nonmyc-
orrhizal nonnative species, thus maintaining nonnative plant
dominance and inhibiting the re-establishment of native
species (‘the degraded mutualisms hypothesis’; Vogelsang
et al., 2005). Others have reported that nonnative species are
often less dependent on arbuscular mycorrhizal fungi (Reeves
et al., 1979; Allen & Allen, 1980; Pendleton & Smith, 1983;
but see Marler et al., 1999; Richardson et al., 2000; Callaway
et al., 2004b). It is not clear whether the invasives inhibit myc-
orrhizas or preferentially invade areas inherently depauperate
of mycorrhizas.

2. Nitrogen fixers

Invasive plants commonly increase levels of soil nitrogen,
perhaps because many successful invasives take advantage of
mutualisms with native nitrogen-fixing bacteria (Rhizobium
spp. and Frankia spp.) (Allen & Allen, 1981; De Faria et al.,
1989; Clawson et al., 1997; Ehrenfeld, 2003). Alternatively,
invasive nonnative species may bring their symbionts with
them, rather than enter into new associations with resident
Rhizobium spp. (Weir et al., 2004; Chen et al., 2005). Regardless,
symbioses between invasives and nitrogen-fixers are common
even in areas without native flora that form these associations
(Richardson et al., 2000; Weir et al., 2004). By contrast, the
absence of Rhizobium inoculum or low inoculum densities
can limit the invasive success of nonnative species (Parker,
2001). Parker (2001) reported that a threshold density of
nitrogen-fixing bacteria is often necessary for nodule development
on invading legumes. Indigenous legumes may provide necessary
threshold densities (M. A. Parker, pers. comm.). Similar
inoculum limitations may exist for species forming symbioses
with Frankia spp. (Simonet et al., 1999).

The absence of appropriate nitrogen-fixing bacteria may
limit some invasions, but Myrica faya invasion in Hawaii
appears to have been highly successful because of a symbiosis
with the nitrogen-fixing actinomycete Frankia (Vitousek et al.,
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1987; Burleigh & Dawson, 1994). We do not know if Myrica
arrived with its own Frankia or if Frankia was already present
in the system. Regardless, this mutualism has dramatically
altered nitrogen cycling in Hawaiian ecosystems and contributed
to highly altered native plant communities (Vitousek et al.,
1987). Invasion by nonnative plants with nitrogen-fixing
symbionts may also enhance secondary invasions by nitrophi-
lous weedy species (Yelenik et al., 2004).

Non-nitrogen fixing invasives may take advantage of the
soil legacies left by native plants and their nitrogen-fixing
mutualists. Maron & Connors (1996) found that seedlings of
the nonnative grass Bromus diandrus accumulated 48% more
root biomass and 93% more shoot biomass when grown in
soil collected under experimentally killed native nitrogen-fix-
ing shrubs (i.e. lupines), compared with B. diandrus seedlings
grown in soil collected at least 1 m away from lupines. Inva-
sive nonnative plant species may also negatively affect the
nodulation of resident plants and have direct negative effects
on resident nitrogen-fixing microbes (and nitrifying bacteria)
(Rice, 1964). Thus, interactions between plants and nitrogen-
fixing symbionts may affect the establishment of nonnative
species and their impact on resident native species.

Other microbes in the nitrogen cycle can be affected by
invasives (Rice, 1964; Hawkes et al., 2005). For example,
Hawkes et al. (2005) determined that invasive nonnative
grasses doubled gross nitrification rates, in part by increasing
the abundance and altering the composition of ammonia-
oxidizing bacteria in the soil. These plant-driven changes in
soil microbial communities are likely to disrupt ecosystem
function and leave an invisible legacy of invasion.

V. Conclusion

There are many direct and indirect mechanisms by which
plant–soil biota interactions can affect the invasion of nonnative
plant species. Although some ideas presented in this paper
have more empirical and theoretical support than others, even
the best understood processes are supported by no more than
a handful of studies. Additional research with other species in
other systems, and preferably with an explicit biogeographical
context (Hierro et al., 2005); will be crucial for developing
reliable generalizations about the role of soil biota in promoting
or repelling invasives. Focusing on specific soil-borne taxa and
their direct effects may be necessary to test rigorously the
enemy release hypothesis and enhanced mutualisms hypothesis
(Fig. 4). However, elucidating the effects of single species of
soil biota outside of the context of the entire soil community
may not accurately describe interactions occurring in nature.
For example, the powerful effects of a particular nitrifying
bacterial species may be irrelevant in the absence of nematodes
(Horiuchi et al., 2005). However, a distinct advantage to
studying soil communities is that the net effect of the entire
community can be described relatively easily via plant–soil biota
feedback or net soil biota effect experiments. The development

of hypotheses that focus on the synergistic effects of the entire
below-ground community may be particularly useful in
determining the effects of soil biota on plants in their native
and nonnative ranges. Importantly, attention to the effects of
native soil biota on nonnative plants that do not successfully
invade (Simberloff & Gibbons, 2004; Clay et al., 2006) will
be crucial if we are to assess the relative importance of soil
biota in invasions.
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